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Abstract: Utilizing (-)-quinic acid as a differentiated bis-aldehyde chiron, both pairs of hepoxilin B3 enantiomers and a glutathione:
adduct were synthesized by regiospecific functionalization of an acyclic vic-diol.

Since its initial isolation in 1979 by Walker et al.,! hepoxilin Bz (HxB3) (1) and related oxiranyl-carbinols
have been identified in plants,2 marine organisms,3 and several animal species.* Generally, 1 occurs as a pair of
C(10)-hydroxy diasterecomers and, in the case of mammalian tissue, arises from 12(S)-
hydroperoxyeicosatetracnoic acid [12(S)-HPETE] via enzymatic’ and non-enzymatic intramolecular
rearrangement.S The absolute configuration of 1 isolated from non-mammalian sources is for the most part
unknown. In vivo, 1 is rapidly hydrated to the corresponding 10,11,12-triol, trioxilin B3,” and is a substrate for
glutathione S-transferases3 in analogy with other fatty acid epoxides.’
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Arachidonate metabolites from the hepoxilinfrioxilin pathway have gamered considerable attention recently
as a consequence of their varied and potent biological effects.1? As part of a comprehensive synthetic program!1?
to expedite the physiologic evaluation and structural elucidation of novel eicosanoids, we report herein a
stereocontrolled total synthesis of the four HxB3 stereoisomers 7b,d and 10b,c as well as glutathione conjugate
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9b.12 Our strategy utilized (-)-quinic acid (2) as a convenient bis-aldehyde chiron and exploited a highly
regiospecific derivatization of an acyclic diol as the key step (eq 1).

Alcohol 3a, readily available!3 in 57% overall yield from commercial 2, was protected by trityl cation
promoted alkylation with 4-methoxybenzylchlorimidate!4 to give 3b which was subjected to catalytic osmylation
under standard conditions (Scheme 1), Lead tetracetate cleavage of the resultant vic-diol and hydride reduction was
rewarded with acyclic triol 4,15 obtained as a mixture of diastereomers. In practice, the sequence from 3b to 4
was performed without isolation of intermediates.
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2MPMOC(CClg)=NH, Ph;CBF, (3 mole %), EtO, 0°C, 1 h.?0s0,, NMO, Me,CO/H,0 (3:1), 23°C,

4 h.°Pb(OAG)4, NazC O3, CHCl, -78°C, 0.25 h.%LiAH,, THF, 23°C, 3 h.°PhgPCHCsH; (3 equiv), THF
,-780C, 0.5 h; then, 23°C, 12 h.{COCI),/DMSO, CH.Cl,, -78°C, 1 h; EtgN, -78° -> 23°C, 0.3 h.98 (1.1
oquiv), THF/PhCHg (1:3), -78°C, 0.1 h; -40°C, 1 h; 0°C, 0.5 h.'0.5% HCUMeOH, 23°C, 12 h.TsCl (2
equiv), DMAP/EtsN, CHoCl,, -28°C, 48 h:Me BuSICI (1.3 equiv), AgNO 3 (1.2 equiv), CsHeN (5 equiv)
, THF, -28°C, 4 d.NaOMe, MeOH, 0°C, 3 h.DDQ (1.4 equiv), CH,Cl/H,O (18:1), 23°C, 3 h."DEAD/
Ph,P/BzOH (1.3 equiv each), PhH, 23°C, 2 h. NaOMe, MeOH, 23°C, 1 h.

The bis-aldehyde functionality implicit in 4 was accessed sequentially by selective oxidation of the vic-diol
with Pb(OAc), and Wittig olefination using hexylidenetriphenylphosphorane. PTLC (Si02, 40% EtOAc/hexane,
R;~0.55) furnished 5.16 Swemn oxidation of 5 gave rise to the second aldehyde that was homologated to give
protected trioxilin 6a by condensation with 7-carbomethoxyhepta-3(Z)-en-1-ylidenetriphenylphosphorane 8.17
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With the basic carbon skeleton complete, final functional group elaboration was initiated by acetonide
hydrolysis with dilute acid. The liberated alcohols of 6b were differentiated by low temperature tosylation
affording 6¢. Notably, none of the C(11)-regioisomer was observed under these conditions. Tosylate 6¢c was
smoothly transformed to 10(S),11(S),12(S)-hepoxilin B3 methyl ester (7b) via MPM ether 7a by NaOMe induced
ring closure and DDQ deprotection. Routine Mitsunobu inversion of 7b secured the corresponding epimeric
C(10)-benzoate 7¢ that was solvolyzed to 10(R),11(S),12(S)-hepoxilin B3 methyl ester (7d).

Interestingly, exposure of epoxide 7b to N-triflucroacetylglutathione dimethy! ester!8 [3.5 equiv (1.35
M), iPr;NEt (10 equiv), MeOH, 35-40°C, 20h] gave regioisomer 9a (67%) as the sole product after Sep-Pak®
C,3 isolation and PTLC purification (Si0z, 8% MeOH/CH;Cl;, R¢~0.5). Standard hydrolysis [NaOH, EtOH/H,0O
(1:1), 23°C, 16h] provided the unprotected conjugate 9b.

NHR'
RO.C

The hepoxilin isomers that would evolve from 12(R)-HPETE were also secured from 6b, but in this
instance, by exclusive C(12)-silylation resulting in 6d (Scheme 1). Mesylation of the remaining C(11)-hydroxyl
(MsC1,Et3N,CH,Cl3,-20°C, 0.5h) and fluoride mediated desilylation with concomitant cyclization (BuyNF, THF,
23°C, 1h) led to 10a (31% overall conversion from 6d). Repetition of the MPM clcavage and C(10)-inversion
sequence as described above and with comparable yields provided 10(S),11(R),12(R)- and 10(R),11(R),12(R)-
hepoxilin B3 methyl ester 10b and ¢, respectively.

Esters 7b, 7d, 10b, and 10c were converted to their related free acids by saponification (NaOH, MeOH,
23°C, 4h), adjustment to pH 4.5, and extractive isolation.
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